Saturday, 12 August 2017

การย้าย ค่าเฉลี่ย บรรทัด หุ้น


ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่เป็นตัวชี้วัดการวิเคราะห์ทางเทคนิคที่มีความยืดหยุ่นมากที่สุดและใช้บ่อยมากที่สุด เป็นที่นิยมอย่างมากในหมู่พ่อค้าส่วนใหญ่เนื่องจากความเรียบง่าย ทำงานได้ดีที่สุดในสภาพแวดล้อมที่มีแนวโน้ม บทนำในสถิติค่าเฉลี่ยเคลื่อนที่เป็นเพียงค่าเฉลี่ยของชุดข้อมูลบางชุดเท่านั้น ในกรณีของการวิเคราะห์ทางเทคนิคข้อมูลเหล่านี้ส่วนใหญ่จะแสดงด้วยการปิดราคาหุ้นในแต่ละวัน อย่างไรก็ตามผู้ค้าบางรายยังใช้ค่าเฉลี่ยแยกกันสำหรับทุกๆนาทีและสูงสุดหรือแม้แต่ค่าเฉลี่ยของจุดกึ่งกลาง (ซึ่งคำนวณโดยบวกขึ้นทุกวันและต่ำสุดและหารด้วยสองค่านี้) อย่างไรก็ตามคุณสามารถสร้างค่าเฉลี่ยเคลื่อนที่ได้ในกรอบเวลาที่สั้นลงเช่นโดยการใช้ข้อมูลรายวันหรือนาที ตัวอย่างเช่นถ้าคุณต้องการสร้างค่าเฉลี่ยเคลื่อนที่ 10 วันคุณเพียงแค่เพิ่มราคาปิดทั้งหมดในช่วง 10 วันที่ผ่านมาและหารด้วย 10 (ในกรณีนี้เป็นค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย) ในวันถัดไปเราทำเช่นเดียวกันยกเว้นว่าเราใช้ราคาอีกครั้งในช่วง 10 วันที่ผ่านมาซึ่งหมายความว่าราคาที่เป็นวันสุดท้ายในการคำนวณของเราสำหรับวันก่อนหน้าจะไม่รวมอยู่ในค่าเฉลี่ยในปัจจุบันอีกต่อไปด้วยซึ่งจะถูกแทนที่ด้วยในวันวาน ราคา. การเปลี่ยนแปลงข้อมูลในลักษณะนี้กับทุกๆวันทำการซื้อขายใหม่จึงเป็นค่าเฉลี่ยระยะยาว วัตถุประสงค์และการใช้ค่าเฉลี่ยเคลื่อนที่ในการวิเคราะห์ทางเทคนิคค่าเฉลี่ยเคลื่อนที่เป็นตัวบ่งชี้แนวโน้ม จุดประสงค์ของมันคือการตรวจจับจุดเริ่มต้นของเทรนด์ตามความคืบหน้าและรายงานการกลับรายการหากเกิดขึ้น ในทางตรงกันข้ามกับแผนภูมิการย้ายค่าเฉลี่ยไม่ได้คาดหวังให้เริ่มหรือจุดสิ้นสุดของแนวโน้ม พวกเขายืนยันเพียง แต่บางครั้งหลังจากการกลับรายการที่เกิดขึ้นจริง เกิดจากการก่อสร้างของพวกเขาเนื่องจากตัวชี้วัดเหล่านี้ใช้ข้อมูลทางประวัติศาสตร์เพียงอย่างเดียวเท่านั้น ค่าเฉลี่ยเคลื่อนที่ที่มีค่าเฉลี่ยน้อยกว่านี้จะเร็วกว่าที่จะสามารถตรวจจับการกลับรายการแนวโน้มได้ เป็นเพราะจำนวนข้อมูลในอดีตซึ่งมีอิทธิพลอย่างมากต่อค่าเฉลี่ย ค่าเฉลี่ยเคลื่อนที่ 20 วันสร้างสัญญาณการกลับรายการแนวโน้มเร็วกว่าค่าเฉลี่ย 50 วัน อย่างไรก็ตามยังเป็นความจริงที่ว่าจำนวนวันที่เราใช้ในการคำนวณค่าเฉลี่ยเคลื่อนที่จะน้อยกว่าสัญญาณที่ผิดพลาดมากขึ้นที่เราได้รับ ดังนั้นผู้ค้าส่วนใหญ่จึงใช้การรวมกันของค่าเฉลี่ยเคลื่อนที่หลายค่าซึ่งทั้งหมดจะต้องให้สัญญาณพร้อมกันก่อนที่ผู้ค้าจะเปิดตำแหน่งในตลาด อย่างไรก็ตามค่าเฉลี่ยเคลื่อนที่ที่ล่าช้าหลังแนวโน้มไม่สามารถตัดออกได้อย่างสมบูรณ์ สัญญาณการซื้อขายใด ๆ ของค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการสร้างสัญญาณซื้อหรือขายและกระบวนการนี้ง่ายมาก ซอฟต์แวร์แผนภูมิจะคำนวณค่าเฉลี่ยเคลื่อนที่เป็นเส้นตรงลงในแผนภูมิราคา สัญญาณถูกสร้างขึ้นในสถานที่ที่ราคาตัดกันสายเหล่านี้ เมื่อราคาพุ่งสูงขึ้นเหนือเส้นค่าเฉลี่ยเคลื่อนที่จะแสดงถึงจุดเริ่มต้นของแนวโน้มขาขึ้นใหม่และหมายความว่าสัญญาณซื้อ ในทางตรงกันข้ามหากราคาทะลุตามเส้นค่าเฉลี่ยเคลื่อนที่และตลาดปิดในบริเวณนี้ก็จะส่งสัญญาณถึงจุดเริ่มต้นของแนวโน้มลดลงและถือเป็นสัญญาณการขายโดยใช้ค่าเฉลี่ยหลาย ๆ รายการนอกจากนี้เรายังสามารถเลือกใช้การเคลื่อนไหวหลายรายการ เฉลี่ยในเวลาเดียวกันเพื่อลดเสียงรบกวนในราคาและโดยเฉพาะอย่างยิ่งสัญญาณเท็จ (whipsaws) ซึ่งใช้อัตราผลตอบแทนถัวเฉลี่ยเคลื่อนที่เพียงครั้งเดียว เมื่อใช้ค่าเฉลี่ยหลายค่าสัญญาณการซื้อจะเกิดขึ้นเมื่อค่าเฉลี่ยที่สั้นกว่าจะสูงกว่าค่าเฉลี่ยที่ยาวนานเช่น ค่าเฉลี่ยเฉลี่ย 50 วันเหนือค่าเฉลี่ย 200 วัน ในทางกลับกันสัญญาณการขายในกรณีนี้จะเกิดขึ้นเมื่อค่าเฉลี่ยของค่าเฉลี่ย 50 วันมีค่าต่ำกว่าค่าเฉลี่ย 200 โดยในทำนองเดียวกันเรายังสามารถใช้การรวมกันของสามค่าเฉลี่ยเช่น ค่าเฉลี่ย 5 วัน 10 วันและ 20 วัน ในกรณีนี้มีแนวโน้มสูงขึ้นหากเส้นค่าเฉลี่ย 5 วันอยู่เหนือค่าเฉลี่ยเคลื่อนที่ 10 วันในขณะที่ค่าเฉลี่ย 10 วันยังคงสูงกว่าค่าเฉลี่ย 20 วัน การข้ามค่าเฉลี่ยเคลื่อนที่ซึ่งนำไปสู่สถานการณ์นี้ถือเป็นสัญญาณการซื้อ ตรงกันข้ามแนวโน้มลดลงจะแสดงโดยสถานการณ์เมื่อเส้นเฉลี่ย 5 วันต่ำกว่าค่าเฉลี่ย 10 วันในขณะที่ค่าเฉลี่ย 10 วันต่ำกว่าค่าเฉลี่ยเฉลี่ย 20 วันการใช้ค่าเฉลี่ยเคลื่อนที่สามครั้งพร้อมกันจะ จำกัด จำนวนเท็จ สัญญาณที่สร้างขึ้นโดยระบบ แต่ยัง จำกัด ศักยภาพในการทำกำไรด้วยเช่นกันระบบดังกล่าวจะสร้างสัญญาณการซื้อขายเฉพาะหลังจากที่มีการกำหนดแนวโน้มอย่างมั่นคงในตลาดแล้ว สัญญาณเข้าสามารถสร้างขึ้นได้ภายในระยะเวลาสั้น ๆ ก่อนการกลับรายการแนวโน้ม ช่วงเวลาที่ผู้ค้าใช้สำหรับการคำนวณค่าเฉลี่ยเคลื่อนที่จะแตกต่างกันมาก ตัวอย่างเช่นตัวเลข Fibonacci เป็นที่นิยมมากเช่นการใช้ค่าเฉลี่ย 5 วัน 21 วันและ 89 วัน ในการซื้อขายล่วงหน้าการรวมกันของ 4-9- และ 18- วันเป็นที่นิยมอย่างมากด้วย ข้อดีข้อเสียเหตุผลที่ว่าทำไมค่าเฉลี่ยเคลื่อนที่ที่ได้รับความนิยมมากจึงแสดงให้เห็นถึงกฎพื้นฐานหลายประการในการซื้อขาย การใช้ค่าเฉลี่ยเคลื่อนที่ช่วยให้คุณสามารถลดความสูญเสียของคุณได้ขณะที่ปล่อยให้ผลกำไรของคุณทำงาน เมื่อใช้ค่าเฉลี่ยเคลื่อนที่เพื่อสร้างสัญญาณการซื้อขายคุณมักจะค้าทิศทางของแนวโน้มตลาดไม่ใช่กับการซื้อขาย นอกจากนี้เมื่อเทียบกับการวิเคราะห์รูปแบบแผนภูมิหรือเทคนิคอัตนัยอื่น ๆ ค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการสร้างสัญญาณการซื้อขายตามกฎที่ชัดเจนซึ่งจะช่วยขจัดความเป็นส่วนตัวของการตัดสินใจซื้อขายหลักทรัพย์ซึ่งสามารถช่วยผู้ค้าจิตได้ อย่างไรก็ตามข้อเสียที่สำคัญของค่าเฉลี่ยเคลื่อนที่คือการทำงานได้ดีเมื่อตลาดมีแนวโน้มเท่านั้น ดังนั้นในช่วงเวลาของตลาดที่เปลี่ยนแปลงเร็วเมื่อราคาผันผวนในช่วงราคาหนึ่ง ๆ พวกเขาไม่ได้ผลเลย ระยะเวลาดังกล่าวสามารถใช้เวลามากกว่าหนึ่งในสามของเวลาดังนั้นการพึ่งพาค่าเฉลี่ยเคลื่อนที่โดยลำพังจึงมีความเสี่ยงมาก ผู้ค้าบางรายจึงแนะนำให้รวมค่าเฉลี่ยเคลื่อนที่โดยใช้ตัวบ่งชี้ความแรงของแนวโน้มเช่น ADX หรือใช้ค่าเฉลี่ยเคลื่อนที่เท่านั้นเพื่อเป็นตัวบ่งชี้ยืนยันระบบการซื้อขายของคุณ ประเภทของค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยที่ใช้บ่อยที่สุดคือค่าเฉลี่ยเคลื่อนที่แบบถดถอย (SMA) และค่าเฉลี่ยถ่วงน้ำหนักแบบแทน (EMA, EWMA) ค่าเฉลี่ยเคลื่อนที่นี้เรียกว่าค่าเฉลี่ยเลขคณิตและแสดงถึงค่าเฉลี่ยเคลื่อนที่ที่ใช้ง่ายและใช้บ่อยที่สุด เราคำนวณโดยการสรุปราคาปิดทั้งหมดในช่วงเวลาที่กำหนดซึ่งเราจะหารด้วยจำนวนวันในช่วงนั้น อย่างไรก็ตามปัญหาสองข้อเกี่ยวข้องกับค่าเฉลี่ยดังกล่าว: จะพิจารณาเฉพาะข้อมูลที่รวมอยู่ในช่วงเวลาที่เลือกไว้ (เช่นค่าเฉลี่ยเคลื่อนที่ 10 วันจะพิจารณาเฉพาะข้อมูลจาก 10 วันที่ผ่านมาและไม่สนใจข้อมูลอื่น ๆ ทั้งหมด ก่อนหน้านี้) นอกจากนี้ยังมีการวิพากษ์วิจารณ์ว่าบ่อยครั้งสำหรับการจัดสรรน้ำหนักที่เท่ากันให้กับข้อมูลทั้งหมดในชุดข้อมูล (นั่นคือค่าเฉลี่ยเคลื่อนที่ 10 วันจาก 10 วันก่อนมีน้ำหนักเช่นเดียวกับราคาตั้งแต่วันนี้ - 10) ผู้ค้าหลายรายให้เหตุผลว่าข้อมูลจากวันล่าสุดน่าจะมีน้ำหนักมากกว่าข้อมูลที่เก่ากว่าซึ่งจะส่งผลต่อการลดค่าเฉลี่ยของความล่าช้าหลังแนวโน้ม ค่าเฉลี่ยเคลื่อนที่นี้จะแก้ปัญหาทั้งสองที่เกี่ยวข้องกับค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ ประการแรกมันจัดสรรน้ำหนักมากขึ้นในการคำนวณข้อมูลล่าสุด นอกจากนี้บางส่วนยังสะท้อนถึงข้อมูลทางประวัติศาสตร์ทั้งหมดของตราสารนั้น ประเภทของค่าเฉลี่ยนี้มีชื่อตามข้อเท็จจริงที่ว่าน้ำหนักข้อมูลในอดีตลดลงอย่างมาก ความลาดชันของการลดลงนี้สามารถปรับเปลี่ยนตามความต้องการของผู้ประกอบธุรกิจค้าขายวิธีการใช้ค่าเฉลี่ยเคลื่อนที่ในการซื้อหุ้นค่าเฉลี่ยเคลื่อนที่ (MA) เป็นเครื่องมือในการวิเคราะห์ทางเทคนิคที่เรียบง่ายซึ่งช่วยให้ข้อมูลราคาดีขึ้นโดยการสร้างราคาเฉลี่ยที่อัปเดตอยู่ตลอดเวลา ค่าเฉลี่ยจะอยู่ในช่วงเวลาหนึ่งเช่น 10 วัน 20 นาที 30 สัปดาห์หรือช่วงเวลาใดก็ได้ที่ผู้ขายเลือก มีข้อได้เปรียบในการใช้ค่าเฉลี่ยเคลื่อนที่ในการซื้อขายรวมถึงตัวเลือกในประเภทค่าเฉลี่ยเคลื่อนที่ที่จะใช้ กลยุทธ์การย้ายเฉลี่ยยังเป็นที่นิยมและสามารถปรับแต่งให้เหมาะกับช่วงเวลาใด ๆ เหมาะกับนักลงทุนระยะยาวและผู้ค้าระยะสั้น ทำไมต้องใช้ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่สามารถช่วยลดปริมาณเสียงในแผนภูมิราคาได้ มองไปที่ทิศทางของค่าเฉลี่ยเคลื่อนที่เพื่อดูแนวคิดพื้นฐานของราคาที่เคลื่อนไหว ราคาปรับตัวขึ้นและราคาปรับตัวลง (หรือเมื่อเร็ว ๆ นี้) โดยรวมลดลงและราคาปรับตัวลงโดยรวมเคลื่อนไปด้านข้างและราคาน่าจะอยู่ในช่วง ค่าเฉลี่ยเคลื่อนที่สามารถทำหน้าที่เป็นตัวสนับสนุนหรือความต้านทาน ในระยะขาขึ้นค่าเฉลี่ยเคลื่อนที่ 50 วัน 100 วันหรือ 200 วันอาจเป็นระดับการสนับสนุนดังที่แสดงในรูปด้านล่าง นี่เป็นเพราะการกระทำโดยเฉลี่ยเช่นพื้น (การสนับสนุน) ดังนั้นราคาจึงกลับขึ้นมา ในขาลงค่าเฉลี่ยถ่วงน้ำหนักอาจทำหน้าที่เป็นความต้านทานเช่นเพดานราคากระทบมันแล้วเริ่มที่จะลดลงอีกครั้ง ราคาเคยชินเคารพค่าเฉลี่ยเคลื่อนที่ในลักษณะนี้ ราคาอาจไหลผ่านเล็กน้อยหรือหยุดและย้อนกลับก่อนที่จะถึง เป็นแนวทางทั่วไปถ้าราคาอยู่เหนือค่าเฉลี่ยที่เคลื่อนที่แนวโน้มจะเพิ่มขึ้น หากราคาต่ำกว่าค่าเฉลี่ยเคลื่อนที่แนวโน้มจะลดลง ค่าเฉลี่ยเคลื่อนที่สามารถมีความยาวแตกต่างกันได้ (กล่าวสั้น ๆ ) ดังนั้นหนึ่งอาจบ่งบอกถึงแนวโน้มขาขึ้นขณะที่อีกค่าหนึ่งบ่งบอกถึงแนวโน้มขาลง ประเภทของค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่สามารถคำนวณได้หลายวิธี ค่าเฉลี่ยเคลื่อนที่ห้าวัน (SMA) เพียงแค่เพิ่มขึ้นห้าราคาปิดล่าสุดในชีวิตประจำวันและหารด้วยห้าเพื่อสร้างค่าเฉลี่ยใหม่ในแต่ละวัน แต่ละค่าเฉลี่ยจะเชื่อมต่อกันทำให้เกิดเส้นไหลเอกพจน์ ค่าเฉลี่ยเคลื่อนที่ที่นิยมอีกอย่างหนึ่งคือค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) การคำนวณมีความซับซ้อนมากขึ้น แต่โดยทั่วไปใช้น้ำหนักมากขึ้นกับราคาล่าสุด วางแผน SMA 50 วันและ EMA 50 วันในแผนภูมิเดียวกันและคุณจะสังเกตเห็นว่า EMA ทำปฏิกิริยากับการเปลี่ยนแปลงราคาได้เร็วกว่า SMA เนื่องจากมีการเพิ่มน้ำหนักข้อมูลราคาล่าสุด ซอฟต์แวร์การทำแผนที่และแพลตฟอร์มการซื้อขายทำคำนวณดังนั้นจึงไม่มีการใช้คณิตศาสตร์ด้วยตนเองเพื่อใช้ MA ประเภทของ MA ไม่ดีกว่าอีก EMA อาจทำงานได้ดีขึ้นในตลาดหุ้นหรือตลาดการเงินเป็นระยะ ๆ และในบางครั้ง SMA อาจทำงานได้ดีขึ้น กรอบเวลาที่เลือกสำหรับค่าเฉลี่ยเคลื่อนที่จะมีบทบาทสำคัญในประสิทธิภาพของการทำงาน (ไม่ขึ้นกับประเภท) ความยาวเฉลี่ยที่เคลื่อนที่ได้คือ 10, 20, 50, 100 และ 200 ความยาวเหล่านี้สามารถใช้กับกรอบเวลาแผนภูมิใด ๆ (หนึ่งนาทีทุกวันรายสัปดาห์ ฯลฯ ) ขึ้นอยู่กับเส้นขอบการค้าของผู้ค้า กรอบเวลาหรือความยาวที่คุณเลือกสำหรับค่าเฉลี่ยเคลื่อนที่ซึ่งเรียกอีกอย่างว่าช่วงเวลาที่มองย้อนกลับสามารถมีบทบาทอย่างมากในการที่มีประสิทธิภาพ MA ที่มีกรอบเวลาสั้น ๆ จะตอบสนองต่อการเปลี่ยนแปลงของราคาได้เร็วกว่า MA ที่มีระยะเวลาย้อนหลังนาน ในภาพด้านล่างค่าเฉลี่ยเคลื่อนที่ 20 วันจะติดตามราคาที่เกิดขึ้นจริงกว่า 100 วันอย่างใกล้ชิด 20 วันอาจเป็นประโยชน์ในการวิเคราะห์แก่ผู้ประกอบการที่มีอายุสั้นเนื่องจากราคาดังกล่าวใกล้เคียงกับราคามากขึ้นและทำให้เกิดความล่าช้าน้อยกว่าค่าเฉลี่ยเคลื่อนที่ระยะยาว ความล่าช้าคือเวลาที่ใช้สำหรับค่าเฉลี่ยเคลื่อนที่ในการส่งสัญญาณการกลับรายการที่อาจเกิดขึ้น การเรียกคืนเป็นแนวทางทั่วไปเมื่อราคาอยู่เหนือค่าเฉลี่ยที่เคลื่อนที่แนวโน้มจะพิจารณาขึ้น ดังนั้นเมื่อราคาปรับตัวลดลงต่ำกว่าค่าเฉลี่ยที่เคลื่อนที่จะส่งผลให้เกิดการกลับรายการที่อาจเกิดขึ้นจาก MA ค่าเฉลี่ยเคลื่อนที่ 20 วันจะให้สัญญาณการกลับรายการมากขึ้นกว่าค่าเฉลี่ยเคลื่อนที่ 100 วัน ค่าเฉลี่ยเคลื่อนที่สามารถยาวได้ 15, 28, 89 ฯลฯ การปรับค่าเฉลี่ยเคลื่อนที่เพื่อให้ได้ข้อมูลที่ถูกต้องมากขึ้นเกี่ยวกับข้อมูลในอดีตอาจช่วยสร้างสัญญาณที่ดีขึ้นในอนาคต กลยุทธ์การซื้อขาย - Crossovers Crossovers เป็นหนึ่งในกลยุทธ์เฉลี่ยที่เคลื่อนไหวโดยเฉลี่ย ประเภทแรกคือครอสโอเวอร์ราคา เรื่องนี้ถูกกล่าวถึงก่อนหน้านี้และเมื่อราคาสูงกว่าหรือต่ำกว่าค่าเฉลี่ยเคลื่อนที่เพื่อบ่งชี้ถึงแนวโน้มการเปลี่ยนแปลงที่อาจเกิดขึ้น กลยุทธ์อีกอย่างหนึ่งก็คือการใช้ค่าเฉลี่ยเคลื่อนที่สองค่าเป็นแผนภูมิหนึ่งและยาวอีกหนึ่งอัน เมื่อ MA สั้นข้ามเหนือ MA ระยะยาวสัญญาณซื้อตามที่บ่งชี้ว่าแนวโน้มมีการขยับขึ้นซึ่งเรียกว่า Cross สีทอง เมื่อ MA สั้นลงมาต่ำกว่า MA ในระยะยาวสัญญาณการขายของมันบ่งชี้ว่าแนวโน้มมีการเคลื่อนตัวลง ค่านี้เรียกว่าเป็นค่าเฉลี่ย deaddeath ค่าเฉลี่ยเคลื่อนที่คำนวณจากข้อมูลที่ผ่านมาและไม่มีอะไรเกี่ยวกับการคำนวณในลักษณะคาดการณ์ ดังนั้นผลการคำนวณโดยใช้ค่าเฉลี่ยเคลื่อนที่สามารถสุ่มได้ - ในบางครั้งตลาดมีความน่าเชื่อถือและสัญญาณการค้า และบางครั้งก็แสดงให้เห็นว่าไม่มีการเคารพ ปัญหาที่สำคัญอย่างหนึ่งก็คือถ้าการดำเนินการด้านราคากลายเป็นราคาที่ผันผวนราคาอาจแกว่งไปมาเป็นสัญญาณสัญญาณย้อนกลับหลายทิศทาง เมื่อสิ่งนี้เกิดขึ้นได้ดีที่สุดให้หลีกเลี่ยงหรือใช้ตัวบ่งชี้อื่นเพื่อช่วยชี้แจงแนวโน้ม สิ่งเดียวที่สามารถเกิดขึ้นได้กับการครอสโอเวอร์ MA ซึ่ง MAs ได้รับการพันกันเป็นระยะเวลาหนึ่งโดยเริ่มต้นธุรกิจการค้าหลายอย่าง ค่าเฉลี่ยเคลื่อนที่ทำงานได้ดีขึ้นในสภาวะที่มีแนวโน้มสูง แต่มักไม่ดีในสภาวะที่แปรปรวนหรือแตกต่างกัน การปรับกรอบเวลาสามารถช่วยในเรื่องนี้ได้ชั่วคราวแม้ว่าในบางประเด็นประเด็นเหล่านี้มักเกิดขึ้นโดยไม่คำนึงถึงกรอบเวลาที่เลือกสำหรับ MA (s) ค่าเฉลี่ยเคลื่อนที่ช่วยลดข้อมูลราคาโดยการทำให้เรียบและสร้างเส้นไหล วิธีนี้สามารถทำให้แนวโน้มในการแยกตัวง่ายขึ้น ค่าเฉลี่ยเคลื่อนที่แบบเสวนาตอบสนองต่อการเปลี่ยนแปลงของราคาได้ง่ายกว่าค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ในบางกรณีอาจเป็นเรื่องที่ดีและในบางกรณีอาจทำให้เกิดสัญญาณผิดพลาด การเคลื่อนไหวโดยเฉลี่ยที่มีระยะเวลาย้อนกลับสั้นกว่า (เช่น 20 วัน) จะตอบสนองต่อการเปลี่ยนแปลงราคาได้เร็วกว่าค่าเฉลี่ยที่มีระยะเวลามองยาว (200 วัน) การย้ายไขว้เฉลี่ยเป็นกลยุทธ์ยอดนิยมสำหรับทั้งรายการและทางออก MAs ยังสามารถเน้นพื้นที่ของการสนับสนุนหรือความต้านทานที่อาจเกิดขึ้น แม้ว่าค่าดังกล่าวอาจมีการคาดการณ์ก็ตามค่าเฉลี่ยเคลื่อนที่จะขึ้นอยู่กับข้อมูลในอดีตเสมอและเพียงแสดงราคาเฉลี่ยในช่วงเวลาหนึ่งเท่านั้น ข้อ 50 คือข้อตกลงการเจรจาต่อรองและข้อยุติในสนธิสัญญา EU ที่ระบุขั้นตอนที่จะต้องดำเนินการสำหรับประเทศใด ๆ ที่ เบต้าเป็นตัวชี้วัดความผันผวนหรือความเสี่ยงอย่างเป็นระบบของการรักษาความปลอดภัยหรือผลงานเมื่อเทียบกับตลาดโดยรวม ประเภทของภาษีที่เรียกเก็บจากเงินทุนที่เกิดจากบุคคลและ บริษัท กำไรจากการลงทุนเป็นผลกำไรที่นักลงทุนลงทุน คำสั่งซื้อความปลอดภัยที่ต่ำกว่าหรือต่ำกว่าราคาที่ระบุ คำสั่งซื้อวงเงินอนุญาตให้ผู้ค้าและนักลงทุนระบุ กฎสรรพากรภายใน (Internal Internal Revenue Service หรือ IRS) ที่อนุญาตให้มีการถอนเงินที่ปลอดจากบัญชี IRA กฎกำหนดให้ การขายหุ้นครั้งแรกโดย บริษัท เอกชนต่อสาธารณชน การเสนอขายหุ้นมักออกโดย บริษัท ขนาดเล็กและอายุน้อยที่กำลังแสวงหาค่าเฉลี่ยเฉลี่ย: อะไรคือตัวชี้วัดทางเทคนิคที่ได้รับความนิยมมากที่สุดค่าเฉลี่ยเคลื่อนที่จะถูกใช้เพื่อวัดทิศทางของแนวโน้มในปัจจุบัน ค่าเฉลี่ยเคลื่อนที่ทุกประเภท (เขียนโดยทั่วไปในบทแนะนำนี้เป็น MA) คือผลทางคณิตศาสตร์ที่คำนวณโดยเฉลี่ยจำนวนจุดข้อมูลที่ผ่านมา เมื่อพิจารณาแล้วค่าเฉลี่ยที่เกิดขึ้นจะถูกวางแผนลงในแผนภูมิเพื่อให้ผู้ค้าสามารถดูข้อมูลที่ราบรื่นแทนที่จะมุ่งเน้นไปที่ความผันผวนของราคาในแต่ละวันที่มีอยู่ในตลาดการเงินทั้งหมด รูปแบบที่ง่ายที่สุดของค่าเฉลี่ยเคลื่อนที่โดยทั่วไปหมายถึงค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย (SMA) โดยคำนวณค่าเฉลี่ยเลขคณิตของชุดค่าที่กำหนด ตัวอย่างเช่นในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันคุณจะเพิ่มราคาปิดจาก 10 วันที่ผ่านมาและหารผลตาม 10 ในรูปที่ 1 ผลรวมของราคาในช่วง 10 วันที่ผ่านมา (110) คือ หารด้วยจำนวนวัน (10) เพื่อให้ได้ค่าเฉลี่ย 10 วัน หากผู้ค้าต้องการเห็นค่าเฉลี่ย 50 วันแทนจะต้องมีการคำนวณประเภทเดียวกัน แต่จะรวมราคาในช่วง 50 วันที่ผ่านมา ค่าเฉลี่ยที่เกิดขึ้นด้านล่าง (11) คำนึงถึงจุดข้อมูล 10 จุดที่ผ่านมาเพื่อให้ผู้ค้าทราบว่าสินทรัพย์มีราคาเทียบกับ 10 วันที่ผ่านมาอย่างไร บางทีคุณอาจสงสัยว่าทำไมผู้ค้าทางเทคนิคเรียกเครื่องมือนี้ว่าเป็นค่าเฉลี่ยเคลื่อนที่และไม่ใช่แค่ค่าเฉลี่ยปกติ คำตอบก็คือเมื่อค่าใหม่มีพร้อมใช้งานจุดข้อมูลที่เก่าที่สุดต้องถูกลดลงจากชุดข้อมูลและจุดข้อมูลใหม่ ๆ ต้องมาเพื่อแทนที่ ดังนั้นชุดข้อมูลจึงมีการย้ายข้อมูลบัญชีใหม่ ๆ ไปเรื่อย ๆ วิธีการคำนวณนี้ช่วยให้แน่ใจได้ว่าจะมีการบันทึกข้อมูลปัจจุบันเท่านั้น ในรูปที่ 2 เมื่อมีการเพิ่มค่าใหม่ของชุดที่ 5 ช่องสีแดง (แทนจุดข้อมูล 10 จุดที่ผ่านมา) จะเลื่อนไปทางขวาและค่าสุดท้ายของ 15 จะถูกลดลงจากการคำนวณ เนื่องจากค่าที่ค่อนข้างเล็ก 5 จะแทนที่ค่าที่สูงถึง 15 คุณจึงคาดว่าจะเห็นค่าเฉลี่ยของการลดลงของชุดข้อมูลซึ่งในกรณีนี้มีค่าตั้งแต่ 11 ถึง 10 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่เมื่อค่าของ MA ได้รับการคำนวณพวกเขาจะวางแผนลงบนแผนภูมิและเชื่อมต่อแล้วเพื่อสร้างเส้นค่าเฉลี่ยเคลื่อนที่ เส้นโค้งเหล่านี้มีอยู่ทั่วไปในแผนภูมิของผู้ค้าด้านเทคนิค แต่วิธีการใช้งานเหล่านี้อาจแตกต่างกันอย่างมาก (ในภายหลัง) ดังที่เห็นในรูปที่ 3 คุณสามารถเพิ่มค่าเฉลี่ยเคลื่อนที่ได้มากกว่าหนึ่งรายการในแผนภูมิโดยการปรับจำนวนช่วงเวลาที่ใช้ในการคำนวณ เส้นโค้งเหล่านี้ดูเหมือนจะเสียสมาธิหรือทำให้เกิดความสับสนในตอนแรก แต่คุณจะคุ้นเคยกับมันเมื่อเวลาผ่านไป เส้นสีแดงเป็นเพียงราคาเฉลี่ยในช่วง 50 วันที่ผ่านมาในขณะที่เส้นสีน้ำเงินเป็นราคาเฉลี่ยในช่วง 100 วันที่ผ่านมา ตอนนี้คุณเข้าใจว่าค่าเฉลี่ยเคลื่อนที่คืออะไรและแนะนำให้ใช้ค่าเฉลี่ยเคลื่อนที่ที่ต่างกันและดูว่าค่าเฉลี่ยเคลื่อนที่แตกต่างจากค่าเฉลี่ยเคลื่อนที่ที่กล่าวถึงก่อนหน้านี้เท่าไร ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเป็นที่นิยมอย่างมากของผู้ค้า แต่เป็นตัวบ่งชี้ทางเทคนิคทั้งหมดก็มีนักวิจารณ์ หลายคนอ้างว่าประโยชน์ของ SMA มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีน้ำหนักเหมือนกันโดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากกว่าข้อมูลที่เก่ากว่าและควรมีอิทธิพลมากขึ้นต่อผลลัพธ์สุดท้าย ในการตอบสนองต่อคำวิจารณ์นี้ผู้ค้าเริ่มให้น้ำหนักกับข้อมูลล่าสุดซึ่งนำไปสู่การประดิษฐ์เครื่องคิดเลขใหม่ ๆ ประเภทต่างๆซึ่งเป็นที่นิยมมากที่สุดซึ่งเป็นค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) (สำหรับการอ่านเพิ่มเติมโปรดดูข้อมูลเบื้องต้นเกี่ยวกับค่าเฉลี่ยถ่วงน้ำหนักและความแตกต่างระหว่าง SMA กับ EMA) ค่าเฉลี่ยเคลื่อนที่แบบเสวนาค่าเฉลี่ยเคลื่อนที่แบบเสวนาคือค่าเฉลี่ยเคลื่อนที่ที่ให้น้ำหนักมากกว่าราคาล่าสุดในความพยายามที่จะทำให้การตอบสนองดีขึ้น ข้อมูลใหม่ ๆ การเรียนรู้สมการที่ค่อนข้างซับซ้อนสำหรับการคำนวณ EMA อาจไม่จำเป็นสำหรับผู้ค้าจำนวนมากเนื่องจากเกือบทุกชุดรูปแบบแผนภูมิทำคำนวณสำหรับคุณ อย่างไรก็ตามสำหรับคุณ geeks คณิตศาสตร์ออกมีที่นี่สมการ EMA: เมื่อใช้สูตรในการคำนวณจุดแรกของ EMA คุณอาจสังเกตเห็นว่าไม่มีค่าที่จะใช้เป็น EMA ก่อนหน้านี้ ปัญหาเล็ก ๆ นี้สามารถแก้ไขได้โดยเริ่มต้นการคำนวณด้วยค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและต่อเนื่องโดยใช้สูตรด้านบนจากที่นั่น เราได้จัดเตรียมสเปรดชีตตัวอย่างไว้ในตัวอย่างชีวิตจริงในการคำนวณทั้งค่าเฉลี่ยเคลื่อนที่แบบเรียบและค่าเฉลี่ยเคลื่อนที่แบบเสวนา ความแตกต่างระหว่าง EMA และ SMA ตอนนี้คุณเข้าใจดีว่า SMA และ EMA คำนวณอย่างไรให้ลองดูว่าค่าเฉลี่ยเหล่านี้แตกต่างกันอย่างไร เมื่อพิจารณาการคำนวณ EMA คุณจะสังเกตเห็นว่าจุดข้อมูลสำคัญ ๆ อยู่ในจุดข้อมูลล่าสุดทำให้เป็นประเภทของค่าเฉลี่ยถ่วงน้ำหนัก ในรูปที่ 5 ตัวเลขของช่วงเวลาที่ใช้ในแต่ละค่าเฉลี่ยเหมือนกัน (15) แต่ EMA จะตอบสนองต่อการเปลี่ยนแปลงราคาได้เร็วขึ้น สังเกตว่า EMA มีมูลค่าสูงขึ้นเมื่อราคาเพิ่มขึ้นและลดลงเร็วกว่า SMA เมื่อราคาลดลง การตอบสนองนี้เป็นเหตุผลหลักที่ทำให้ผู้ค้าจำนวนมากต้องการใช้ EMA มากกว่า SMA อะไรที่แตกต่างกันระหว่างวันหมายถึงค่าเฉลี่ยเคลื่อนที่เป็นตัวบ่งชี้ที่สามารถปรับแต่งได้โดยสิ้นเชิงซึ่งหมายความว่าผู้ใช้สามารถเลือกกรอบเวลาที่ต้องการได้ทุกเมื่อสร้างค่าเฉลี่ย ช่วงเวลาที่ใช้บ่อยที่สุดในการเคลื่อนที่โดยเฉลี่ยอยู่ที่ 15, 20, 30, 50, 100 และ 200 วัน ช่วงเวลาสั้น ๆ ที่ใช้ในการสร้างค่าเฉลี่ยความละเอียดอ่อนมากขึ้นคือการเปลี่ยนแปลงราคา ยิ่งช่วงเวลาที่ยาวนานขึ้นเท่าไรก็ยิ่งอ่อนไหวหรือเรียบเนียนขึ้นเท่านั้นโดยเฉลี่ยแล้ว ไม่มีกรอบเวลาที่เหมาะสมที่จะใช้เมื่อตั้งค่าค่าเฉลี่ยเคลื่อนที่ของคุณ วิธีที่ดีที่สุดในการพิจารณาว่าช่วงใดที่ดีที่สุดสำหรับคุณคือการทดสอบกับช่วงเวลาต่างๆจนกว่าคุณจะพบช่วงเวลาที่เหมาะกับกลยุทธ์ของคุณวิธีการใช้ Moving Averages การย้ายค่าเฉลี่ยช่วยให้เราสามารถกำหนดแนวโน้มและอันดับที่สองเพื่อรับรู้ได้ การเปลี่ยนแปลงในแนวโน้ม แค่นั้นแหละ. ไม่มีอะไรที่ดีสำหรับพวกเขา สิ่งอื่นใดเป็นเพียงแค่เสียเวลา ฉันจะไม่ได้รับรายละเอียดเกี่ยวกับวิธีการที่พวกเขาจะถูกสร้างขึ้น มีเกี่ยวกับเว็บไซต์ zillion ที่จะอธิบายการแต่งหน้าทางคณิตศาสตร์ของพวกเขา ฉันจะปล่อยให้คุณทำอย่างนั้นในวันหนึ่งของคุณเองเมื่อคุณเบื่อกับความคิดของคุณ แต่สิ่งที่คุณต้องรู้ก็คือเส้นค่าเฉลี่ยเคลื่อนที่เป็นเพียงราคาเฉลี่ยของหุ้นในช่วงเวลาหนึ่ง แค่นั้นแหละ. ค่าเฉลี่ยเคลื่อนที่สองค่าที่ฉันใช้ค่าเฉลี่ยเคลื่อนที่สองค่าคือค่าเฉลี่ยเคลื่อนที่เฉลี่ยของช่วงเวลา 10 (SMA) และค่าเฉลี่ยเคลื่อนที่เชิงเส้น 30 (EMA) ฉันชอบที่จะใช้ช้าลงและเร็วขึ้น เพราะเหตุใดเมื่อความเร็วที่เร็ว (10) ข้ามไปช้ากว่า (30) ก็จะส่งสัญญาณการเปลี่ยนแปลงแนวโน้ม ลองดูตัวอย่าง: คุณสามารถดูในแผนภูมิด้านบนว่าเส้นเหล่านี้สามารถช่วยคุณกำหนดแนวโน้มได้อย่างไร ที่ด้านข้างซ้ายของกราฟ 10 SMA อยู่เหนือเส้น 30 EMA และมีแนวโน้มเพิ่มขึ้น สัญญาณ SMA 10 ตัวผวนลงมาต่ำกว่า 30 EMA ในช่วงกลางเดือนสิงหาคมและแนวโน้มจะลดลง จากนั้นดัชนี SMA 10 ตัวก็ทะลุผ่าน 30 EMA ในเดือนกันยายนและมีแนวโน้มเพิ่มขึ้นอีกครั้งและจะยังคงอยู่ต่อไปเป็นเวลาหลายเดือนหลังจากนั้น ต่อไปนี้เป็นกฎ: ให้ความสำคัญกับตำแหน่งที่ยาวเมื่อ SMA 10 อยู่เหนือเส้น 30 EMA เน้นเฉพาะตำแหน่งสั้น ๆ เมื่อ SMA 10 อยู่ต่ำกว่า 30 EMA มันไม่ได้ง่ายกว่านั้นและมันก็จะทำให้คุณอยู่ทางด้านขวาของแนวโน้มทราบว่าค่าเฉลี่ยเคลื่อนที่จะทำงานได้ดีเมื่อหุ้นมีแนวโน้ม - ไม่เมื่อพวกเขาอยู่ในช่วงการซื้อขาย เมื่อหุ้น (หรือตลาดเอง) กลายเป็นเลอะเทอะคุณสามารถละเลยค่าเฉลี่ยเคลื่อนที่ได้ - โดยปกติแล้วจะเป็นสิ่งสำคัญที่ต้องจดจำ (สำหรับตำแหน่งที่ยาว - ย้อนกลับสำหรับตำแหน่งสั้น ๆ ): SMA 10 ตัวต้องสูงกว่า 30 EMA ต้องมีช่องว่างระหว่างค่าเฉลี่ยเคลื่อนที่ ทั้งสองค่าเฉลี่ยเคลื่อนที่จะต้องแคบลง ค่าเฉลี่ยเคลื่อนที่ 200 ครั้ง SMA 200 ถูกใช้เพื่อแยกดินแดนของวัวจากดินแดนหมี การศึกษาพบว่าการเน้นตำแหน่งยาวเหนือบรรทัดนี้และตำแหน่งสั้น ๆ ใต้เส้นนี้จะทำให้คุณมีขอบเล็กน้อย คุณควรเพิ่มค่าเฉลี่ยเคลื่อนที่นี้ลงในแผนภูมิทั้งหมดในกรอบเวลาทั้งหมด ใช่. แผนภูมิรายสัปดาห์, แผนภูมิรายวันและแผนภูมิภายในวัน (15 นาที, 60 นาที) SMA 200 เป็นค่าเฉลี่ยเคลื่อนที่ที่สำคัญที่สุดที่จะมีอยู่ในแผนภูมิหุ้น คุณจะประหลาดใจที่จำนวนครั้งที่หุ้นจะย้อนกลับในพื้นที่นี้ ใช้เพื่อประโยชน์ของคุณนอกจากนี้เมื่อเขียนการสแกนหาหุ้นคุณสามารถใช้ตัวเลือกนี้เป็นตัวกรองเพิ่มเติมเพื่อค้นหาการตั้งค่าที่ยาวนานซึ่งอาจอยู่เหนือบรรทัดนี้และอาจมีการตั้งค่าสั้น ๆ ที่อยู่ใต้เส้นนี้ การสนับสนุนและความต้านทานขัดต่อความเชื่อที่เป็นที่นิยมหุ้นไม่พบการสนับสนุนหรือความต้านทานต่อค่าเฉลี่ยเคลื่อนที่ หลายครั้งที่คุณจะได้ยินพ่อค้าบอกว่า Hey ดูที่หุ้นนี้มันเด้งออกจากค่าเฉลี่ยเคลื่อนที่ 50 วันทำไมสต็อกก็รีบออกจากสายที่ผู้ประกอบการค้าบางวางบนแผนภูมิหุ้นมัน wouldnt หุ้นจะเด้ง (ถ้าคุณต้องการเรียกว่า) จากระดับราคาที่สำคัญที่เกิดขึ้นในอดีตไม่ใช่บรรทัดบนแผนภูมิ หุ้นจะกลับ (ขึ้นหรือลง) ในระดับราคาที่ใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ที่เป็นที่นิยม แต่จะไม่ย้อนกลับที่บรรทัด ดังนั้นสมมติว่าคุณกำลังดูแผนภูมิและคุณเห็นสต็อคที่ดึงกลับมาช่วยบอกว่าค่าเฉลี่ยเคลื่อนที่รอบระยะเวลา 200 ดูที่ระดับราคาในแผนภูมิซึ่งเป็นจุดที่มีการสนับสนุนหรือความต้านทานอย่างมากในอดีต นี่คือพื้นที่ที่หุ้นน่าจะกลับรายการ

No comments:

Post a Comment